It was James Gowan, not Jim Stirling, who explicitly voted the axiom 'this style for the job' (with its corollary implied: 'a different style for every different job'). So Stirling-bashers who have been poised to savage him for his choice of a houseful style and finish for the Leicester Engineering Laboratories on the new building for the History Faculty in Cambridge (recently out of book). In any case, the History Faculty is a pretty daunting demonstration of how little the details have to do with fixing a style. Complacently, the brick and tile surfaces with all those neat gutters and cornices and balustrades reappear as Cambridge, so does a large sequence of standardized industrial glazing, and so even do chamfer-cone stair-towers, but the result is an entirely different style of building. Much of this rhetorical effect (expressionism--according to Professor Peranson of the Engineering Faculty) was due to a very demonstrative separation of the different functional volumes--towers, studio halls, workshops, etc.--and their further differentiation by a repertoire of widely contrasting surface treatments--brick, smooth glazing, angled glazing, north-light glazing, free-form glazing--each of which tended to be used on only one type of functional volume. The whole complex seemed to be springing apart, which was one evidence asserting its independence. The History Faculty building, by contrast, is folded back on itself, into a singular and relatively expressive form, without any very strong projections or major breaks of the silhouette. The stair-towers have a completely different effect from those at Leicester. Also there are, effectively, only two visible surface treatments: the basalt red brick or tile, which is largely restricted to the pilasters in the upper stories, and the standard industrial glazing which surfaces almost 75 per cent of the upper structures above the glazing.

There is, at Leicester, an alternative kind of glazed surface; where Leicester has the space-designed diagonal north-lighting, Cambridge has a specially-designed giant skylight over the reading room of the History Faculty library. But whereas Leicester's north-light cuts spectacularly all around the perimeter of the workshop area and are a compelling part of the total visual image, Cambridge's skylight is quite difficult to see from outside the building and contributes nothing to its silhouette. It is a crucial part, perhaps the most crucial of all the design, it registers strongly in Stirling's widely published neoclassical drawing of the scheme, yet it seems to end up in his final version as a blocky, almost empty among the piles of the adjoining building by Casson and Clode on Sidgwick Avenue. Only from there on can you appreciate its stepped pyramid form, unusually so a slice out of the greenhouse of some monumental Victorian botanical garden. This glazed pyramid has been the other great hope of the Stirling-bashers, and again they appear to be out of luck. For months now, stories of the monstrous solar heat gain through all that glass have been circulating by that persistent group who, still smarting from their defeat when Leicester was shown to be as functional as it was spectacular, were assured that this time they had big Jim booked on a charge of indefensible formalism. This time it would sink, because the stories of sweltering temperatures in the reading room that were going round the lunch-tables of the Architectural Association were all perfectly true and based on personal observation . . . except that the observers had apparently failed to note (or to mention that) the heating throughout the building was being run full time at that time to help dry out the structure. Admittedly, the view of the thermal environment put forward by the architects and the serving consultants in documents circulated to the press is not very inviting--peak temperatures reaching 60 deg F under the most extreme conditions, and the ventilating system able to trim 10 deg F of that figure (or to mention that) the heating throughout the building was being run full time at that time to help dry out the structure. Admittedly, the view of the thermal environment put forward by the architects and the serving consultants in documents circulated to the press is not very inviting--peak temperatures reaching 60 deg F under the most extreme conditions, and the ventilating system able to trim 10 deg F of that figure (or to mention that) the heating throughout the building was being run full time at that time to help dry out the structure. Admittedly, the view of the thermal environment put forward by the architects and the serving consultants in documents circulated to the press is not very inviting--peak temperatures reaching 60 deg F under the most extreme conditions, and the ventilating system able to trim 10 deg F of that figure (or to mention that) the heating throughout the building was being run full time at that time to help dry out the structure. Admittedly, the view of the thermal environment put forward by the architects and the serving consultants in documents circulated to the press is not very inviting--peak temperatures reaching 60 deg F under the most extreme conditions, and the ventilating system able to trim 10 deg F of that figure (or to mention that) the heating throughout the building was being run full time at that time to help dry out the structure. Admittedly, the view of the thermal environment put forward by the architects and the serving consultants in documents circulated to the press is not very inviting--peak temperatures reaching 60 deg F under the most extreme conditions, and the ventilating system able to trim 10 deg F of that figure (or to mention that) the heating throughout the building was being run full time at that time to help dry out the structure. Admittedly, the view of the thermal environment put forward by the architects and the serving consultants in documents circulated to the press is not very inviting--peak temperatures reaching 60 deg F under the most extreme conditions, and the ventilating system able to trim 10 deg F of that figure (or to mention that) the heating throughout the building was being run full time at that time to help dry out the structure. Admittedly, the view of the thermal environment put forward by the architects and the serving consultants in documents circulated to the press is not very inviting--peak temperatures reaching 60 deg F under the most extreme conditions, and the ventilating system able to trim 10 deg F of that figure (or to mention that) the heating throughout the building was being run full time at that time to help dry out the structure. Admittedly, the view of the thermal environment put forward by the architects and the serving consultants in documents circulated to the press is not very inviting--peak temperatures reaching 60 deg F under the most extreme conditions, and the ventilating system able to trim 10 deg F of that figure (or to mention that) the heating throughout the building was being run full time at that time to help dry out the structure. Admittedly, the view of the thermal environment put forward by the architects and the serving consultants in documents circulated to the press is not very inviting--peak temperatures reaching 60 deg F under the most extreme conditions, and the ventilating system able to trim 10 deg F of that figure (or to mention that) the heating throughout the building was being run full time at that time to help dry out the structure. Admittedly, the view of the thermal environment put forward by the architects and the serving consultants in documents circulated to the press is not very inviting--peak temperatures reaching 60 deg F under the most extreme conditions, and the ventilating system able to trim 10 deg F of that figure (or to mention that) the heating throughout the building was being run full time at that time to help dry out the structure. Admittedly, the view of the thermal environment put forward by the architects and the serving consultants in documents circulated to the press is not very inviting--peak temperatures reaching 60 deg F under the most extreme conditions, and the ventilating system able to trim 10 deg F of that figure (or to mention that) the heating throughout the building was being run full time at that time to help dry out the structure.

In summer, with all the louvres open, normal wind pressure can combine with internal stack-effects to suck out heated air from under the upper layer of glass. It should be noted here, although the three ventilating fans are housed in the truss-space between the upper and lower skylights of glass, they do not serve to move air through that space. Rather, they serve to augment stack-effects in the upper part of the main library space. Finally, the outside air enters from the apex of the pyramid and exhausting it to the exterior through the louvres in the pendentive step of the pyramid. Through the cold north-lighting comes air from the windows of the building with outside air temperatures--at mid-August, on a day of continuous sunshine and very little breeze, at 2:15 p.m. and with outside shade temperatures of 74 deg--77 deg F and no mechanical ventilators working . . .